Indecomposable Representations and the Loop-space Operation1

نویسنده

  • ALEX HELLER
چکیده

For a certain class of algebras, including group-algebras of finite groups, we shall introduce a permutation in the set of isomorphismclasses of nonprojective indecomposable modules. This permutation is in essence given by the loop-space functor [2]. It is to be hoped that the study of this permutation may give some insight into the difficult problem of classifying indecomposable representations. In any case we append here some examples, showing that the orbits may be either finite or infinite, and that even in simple cases there may be infinitely many of them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

The six-vertex model at roots of unity and some highest weight representations of the sl2 loop algebra

We discuss irreducible highest weight representations of the sl2 loop algebra and reducible indecomposable ones in association with the sl2 loop algebra symmetry of the six-vertex model at roots of unity. We formulate an elementary proof that every highest weight representation with distinct evaluation parameters is irreducible. We present a general criteria for a highest weight representation ...

متن کامل

One-boundary Temperley–Lieb algebras in the XXZ and loop models

We give an exact spectral equivalence between the quantum group invariant XXZ chain with arbitrary left boundary term and the same XXZ chain with purely diagonal boundary terms. This equivalence, and a further one with a link pattern Hamiltonian, can be understood as arising from different representations of the one-boundary Temperley–Lieb algebra. For a system of size L these representations a...

متن کامل

N ov 2 00 4 One - boundary Temperley - Lieb algebras in the XXZ and loop models

We give an exact spectral equivalence between the quantum group invariant XXZ chain with arbitrary left boundary term and the same XXZ chain with purely diagonal boundary terms. This equivalence, and a further one with a link pattern Hamiltonian, can be understood as arising from different representations of the one-boundary Temperley-Lieb algebra. For a system of size L these representations a...

متن کامل

ar X iv : h ep - t h / 06 02 05 6 v 1 6 F eb 2 00 6 Indecomposable Representations in n Symmetric b , c Ghost Systems via Deformations of the Virasoro Field

The Virasoro field associated to b, c ghost systems with arbitrary integer spin λ on an n-sheeted branched covering of the Riemann sphere is deformed. This leads to reducible but indecomposable representations, if the new Virasoro field acts on the space of states, enlarged by taking the tensor product over the different sheets of the surface. For λ = 1, proven LCFT structures are made explicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010